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How NOT to write parallel programs 

Initial Code 

Profile 

Ship it! 

Add threads 

Fast enough Not fast  
enough 

Parallel code is slower?! 
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What is this person thinking of? 

Edward Lee, “The 
Problem with 
Threads” 

Threads, locks, semaphores, mutexes 

Add threads 
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Architecting parallel software 

Specification 

Profile 

Ship it! 

Map SW Arch 
to HW Arch 

Fast enough 

Not fast  
enough 

Architect SW 
for Parallelism 
using Patterns 
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What is this person thinking of? 

 Today’s code is serial, but the world is parallel 
 Find the inherent parallelism, express it in software, map it 

to parallel hardware 

Re-architect 
with patterns 
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Applying this methodology 

 We developed a pattern language to help people learn 
how to successfully architect parallel programs 

 We applied this methodology in several areas 
 Computer Vision 
 Support Vector Machine Training & 

Classification 

 High-Quality Image 
Contour Detection  

 Object Recognition 
 Optical Flow & Point Tracking 
 Poselet based recognition and 

pose estimation 

 MRI Reconstruction for 
Compressed Sensing 

 Speech Recognition 
 Computational Finance 
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Parallelism in action 

 Berkeley professor Jitendra Malik approached us: 
 
 
 
 
 
 
 

3.7 mins to 1.8 seconds 

My new contour detector is 
awesome, but people can’t use it: 

it’s too slow 
“ 

 A collaborative effort at the ParLab made it 100X faster 
 Rethink algorithms using patterns 
 Efficient parallel implementation 
 



8/19 

Image Contour Detection 

 High quality contours 
 Provide high quality segments 
 And high quality classification 

 But they are expensive to compute 

Image Image Contours Image Segments 
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Image Contours 

 Contours are subjective – they depend on personal perspective 
 Surprise: Humans agree (more or less) 
 We can compare against human “ground truth” 

Image Human Generated 
Contours 

Machine Generated 
Contours 
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gPb Algorithm 

 global Probability of boundary 
 Currently, the most accurate 

image contour detector 
 3.7 mins per small image  

(0.15 MP) limits  applicability 
 N billion images on web 
 Large computer cluster 

would take several years to 
find their contours 

 By then we’d have another 
3N images to process… 

Maire, Arbelaez, Fowlkes, Malik, 
CVPR 2008 
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gPb Computation Outline 

Image 

Convert 
Colorspace 

Combine 

Non-max 
suppression 

Intervening 
Contour 

Combine, 
Normalize 

Contours 

Integral 
Images 

Gradients 

Filter bank 
Convolution 

Filter bank 
Convolution 

K-means 

Histogram 

SGEMM 

Relabel 

Filter bank 
Convolution 

Generalized 
Eigensolver 

SpMV 

BLAS1 BLAS1 BLAS1 BLAS1 BLAS1 

SGEMM 

Form 
Eigenvectors 

Skeletonize 
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Textons: Kmeans 

 Textures are analyzed in the image by finding textons 
 The image is convolved with a filter bank 
 Responses to the filter bank are clustered using 

k-means clustering 
 

 Parallel implementation: use BLAS, parallelize 
histogram construction 

Presenter
Presentation Notes
109x
Mention that without atomic memory transactions, this takes 0.65 seconds.
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Gradients 

 An edge detector designed to filter out noise 
 For every pixel, and for a given scale and orientation, 

compare half-discs centered at that pixel 
 If half-discs are different, response is high (edge detected) 

 
 Algorithmic transformation: Use integral images to 

accelerate the analysis of all the half discs 
 

 

r 
θ 

Presenter
Presentation Notes
Highlight connection to integral images and data structure implications
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Integral Images 

 Integral images are used to reduce algorithmic 
complexity 

Input image Integral image 
O(n2) 

Input convolved with 
constant rectangle 

O(n2r2)  O(n2) 

 Saves redundant summation in gradient calculation 
 Implement using parallel-prefix sums (scans) 

Presenter
Presentation Notes
show rectangle sfor integral image and convolution
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Spectral Graph Partitioning 

 Spectral methods avoid creating small, 
isolated regions 
 

 An affinity matrix links each pixel to its 
local neighbors 
 

 Interconnected local neighborhoods 
make a global system 
 

 This step was the most computationally 
dominant for the serial implementation  
 

Normalized cut 

Min-cut 

Chainmail 

Presenter
Presentation Notes
Mention Demmel, Hoemmen
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Spectral Graph Partitioning, cont. 

 Eigenproblem: we only need the smallest k eigenvectors 
 Algorithmic transformation, suggested by ParLab 

faculty Jim Demmel: 
 Lanczos algorithm with the Cullum-Willoughby test 

Presenter
Presentation Notes
197x
Dual socket Nehalem should be ~18 Gflops
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Performance Results 

Computation Original 
C++ 

C + Pthreads 
(8 threads, 2 sockets) 

Damascene 
(GTX280) 

Textons 8.6 1.35 0.152 

Gradients 53.8 12.92 0.75 

Intervening Contour 6.3 1.21 0.03 

Eigensolver 151.0 14.29 0.81 

Overall 222 seconds 29.79 seconds 1.8 seconds 

gPb: CVPR 2008 

Textons

Gradients

Intervening

Eigensolver

Other

Pthreads GTX280 
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Accuracy & Summary 

 Our results just as accurate 
 1.8 seconds instead of 3.7 

minutes 
 Speedup came from: 
 Rethinking algorithms  
 Parallel implementation 

 3500 downloads 
 Further work built on this to 

create image classifiers 
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Wrapping up 

 Contour detection is only one example of the many 
computations we successfully parallelized 

 Today we’ll also mention  
 compressed sensing MRI reconstruction  
 Gaussian mixture modeling (PyCASP) 
 Optical flow 

 …and there are many more 
 Rearchitecting applications using patterns helped us 

make parallelism practically useful 

Parallelism enables new applications 
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